The Use of a Grammar Methodology in the Development of a Computerized Form Generator for Space Frame Structures

PATRICK J. TRIPENY University of Utah

This paper examines the implications on how a generative grammar may be developed based on the inherent nodal geometry of a space frame structural system. It presents the basis of the nodal geometry and its implementation into a generative grammar system. The grammar system is then used as a form generator for the space frame system when it is implemented into a computer program. Several examples on how the form generator works are given. The research and architectural practice potential of such a system is discussed.

INTRODUCTION

Space frame structures date to the late 19th, early 20th centuries. Alexander Graham Bell is often credited for its invention but it was August Föple who first published a treatise on space frame structures in 1881 (Schueller, 1983). The first commercially available system, the Unistrutt system, was available in 1939 (Condit, 1961) followed quickly with the MERO system which was available in 1940 (Schueller, 1983). Since then many systems have been introduced and many advances have been accomplished in space frame technology, but the morphological realities of such systems has changed little. Architecture which utilizes space frame structural systems tends to be planar, cylindrical or spherical in form, but these are not the only morphologies possible. Pioneers in the use of space frame structures envisioned these structures as being able to be molded to any morphology. A grammar based geometric generator for space frame structures is in this area of study. The generator is used to match a space frame structure to a predetermined morphology. In this manner space frame structures are capable of many morphologies not previously attributed to them.

MORPHOLOGY OF SPACE FRAME SYSTEMS

Space frame structural systems are vector active systems (Engel, 1967); that is, a system which transfers applied loads through a series of axial members. A force enters the space frame system, typically at a nodal member, and is distributed amongst the axial members. Bending and shear forces are handled within the internal axial stresses of the members. The space frame structure acts as a network, where one piece is not easily distinguished from the next. The morphologic characteristics of space frame structural systems are based on this network. The characteristics of the individual members are distinct but the larger morphology has an identity of its own.

The nodal member of a space frame system is a determining factor of the system's morphology. The connection methodology of the node will determine the polyhedra possible with the system. Wachsmann wrote "The joint module determines the position of every point off direct connection from the chosen system" (Wachsmann, 1961, p. 66). Each nodal member must be supported

by strut members from translation in the three cardinal directions in order to maintain stability. This means that each node must have at least three non-coplanar axial member connected to it. The more axial members that can be accommodated at a any given node the greater number of morphological possibilities for the system (Gerrits, 1994).

In 1959 Konrad Wachsmann was commissioned by the U.S. Air Force to develop structures for very large airplane hangars. Wachsmann viewed the project as a problem in developing a building system which would permit every possible combination of geometry with standard, factory made units (Wachsmann, 1961). The system he developed was composed of a set of standardized linear members and a node which would allow up to twenty linear members to be connected to it at one time. Wachsmann provided the ability to build many different airplane hangars, as well as other building types, using this kit of parts. He demonstrated that more than just standard buildings could be designed using standard parts. Wilkinson claims that with this project Wachsmann brought "the science of industrialization to architecture" (Wilkinson, 1991, p.52). This was the beginning of one of the most imaginative periods for building with space frame structures.

Most buildings that use space frame structural systems tend to take their morphology from other structural systems. The most common type of structural system for space frame morphology to mimic is surface active structural systems (Engel, 1967). Surface active structural systems include domes, vaults, and shell structures. Space frame structural systems have also been designed to mimic beam, beam grid, cantilever, and portal frame systems. Engel classifies these systems as bulk active systems. The reason space frame structural systems mimic other systems is due in part to the analysis method used prior to computers.

Prior to the advent of readily accessible fast computers, the process of analyzing the structure was very complex. Space frame structural systems were virtually impossible to fully analyze due to their complexity. Therefore, engineers developed an approximate method through the use of analogous structural systems. If a space frame structure looked like a beam, it was analyzed as a beam structure. If a space frame structure looked like a plate, it was analyzed as a plate structure. For example, a horizontal space frame structure can be approximately analyzed as if it were a solid plate structure experiencing similar loading conditions as the space frame structure. It is assumed that the space frame system would behave similarly to the solid plate. This assumption is acceptable if the space frame is fairly dense and is made of stiff geometry (Schueller, 1983). Once the solid plate is analyzed, the forces in the space frame struts are approximated by determining which internal strut forces would produce bending and shear stresses similar to the solid plate. Analogous systems which have been developed include beam, arch, portal

Fig. 1. A Cuboctahedron.

frame, beam grid, and shell structures.

A GRAMMAR BASED COMPUTER SYSTEM FOR THE DETERMINATION OF THE MORPHOLOGY

Architects and engineers have metaphorically compared the building arts to language. Peter Rice writes of making his structures legible (Rice, 1994). Liebeskind is quoted as stating that "the interpretation of past architecture is dependent on a structural reading" (Wojtowicz, 1986). Architecture, like language, is composed of elements and has structure which defines the relationship between the elements, and like language, the number of elements is limited. This limitation does not restrict the possibility of different architectural styles or different languages. It seems reasonable that this would be developed further. Prior to the modern movement architectural research relating to language was focused primarily on the elements, or vocabulary, of architecture. An example of this is the work of Durand, who composed a "dictionary" of architectural elements (Durand, 1802). Architects would combine selected elements for their individual projects (Wojtowicz, 1986). During and after the modern movement, some architectural researchers turned to grammar researchers in linguistics for inspiration.

There are two approaches to grammar research in linguistics which are currently being discussed in architectural research. The first type is generative grammar research. Generative grammars are rule-based and can be used to generate new sentences in a particular language. The second type is universal grammar research. Universal grammars describe the commonalties between all languages and identifies patterns in how languages may differ. The architectural research reported here is based on generative grammar research. One of the pioneers of generative grammar research in architecture is George Stiny, who referred to these grammars as shape grammars (Stiny, 1976). Stiny developed shape grammars through the examination of collected samples of architecture. Typically these samples consisted of several buildings from one architect or one architectural

Fig. 2. A partial set of triangular faces available using a cuboctahedral nodal space frame system.

Fig. 3. A partial set of tetrahedral units available using a cuboctahedral nodal pace frame system.

Fig. 4. One grammar developed for a cuboctahedral space frame system.

style or type. Stiny defined a shape grammar as consisting of an initial shape (I) and a set of rules (R) for manipulating the shapes (Stiny, 1979). He defines shapes as a finite arrangement of lines (Stiny, 1976), which leads to the rules being manipulations on a set of lines and the architectural design being a composition of lines. He has developed shape grammars for Chinese lattices (Stiny, 1977), Froebel's building gifts (Stiny, 1981) and Greek Cross Churches (Stiny, 1976).

One of the recent significant research developments in the area of generative grammars in architecture comes from one of Stiny's collaborators, William Mitchell. Mitchell kept the concept of the generative grammar as presented by Stiny but he differed from Stiny by changing the vocabulary of the grammar (Mitchell, 1990). In Stiny's shape grammars the vocabulary was defined by a set of lines. In Mitchell's work the vocabulary is defined from the set of architectural elements. This vocabulary can include such elements as columns, windows, pedestals and entablatures. Mitchell refers to these grammars as functional grammars. By using the architectural elements as the vocabulary for the grammar, Mitchell has begun to link the grammar research begun after the modern movement with the vocabulary research accomplished prior to the modern movement.

The grammar for the computer program developed for imaging space frame technology is based on the nodal geometry of the space frame system. The particular space frame nodal system investigated is the cuboctahedral, a twenty-six sided polyhedron (Figure 1), nodal space frame system. This system was first developed by Dr. Mengerinhausen in 1940 which later became known as the MERO space frame system. The nodal geometry defines the triangular faces and the tetrahedral units possible with the system (Figures 2 & 3). The triangular faces and the tetrahedral units are the vocabulary for

Fig. 5. The initial tetrahedral unit and boundary conditions.

Fig. 7. A beam morphology generated by the grammar based computer program.

Fig. 8. A planar morphology generated by the grammar based computer program.

the system. A grammar was then developed using this geometric information (Figure 4). In general the grammar defines a set of rules which define the how two tetrahedral space frame units may be connected, i.e., if a triangular face is unattached a new tetrahedral unit may be attached to the face following one of the rules.

The grammar is just the generating engine for the computer program. The program is also in need of a couple of other input constraints in order to be an effective design tool. The first is a boundary condition which will constrain the generation of tetrahedral units (Figure 5). Unlike earlier boundary constraints imposed by the limits of the structural analytic technique this boundary condition is imposed from the architectural side of the design process and has nothing to do with the structure's morphology. The

Fig. 6. A random grammar being fired upon an unattached triangular face.

final input required for the design tool is an initial tetrahedral unit which the grammar can act upon (Figure 5). The placement of the initial condition is of particular importance since it defines the orientation of the final morphology.

The flow of the design process using this computer program will begin once the architect determines what morphology the building should have. This morphology is translated into a set of boundary conditions which is inputted into the computer program. Next the architect will choose which tetrahedral unit is the initial condition is and where it is located within the boundary conditions. This is where the computer takes over and systematically fits a network of space frame tetrahedral units to the input conditions. In general the iterative process begins with the computer choosing a triangular face which currently does not have a tetrahedral unit attached to it. The computer determines which triangular face type it is and randomly chooses one of the grammars which applicable to that triangular face type (Figure 6). It temporarily adds the tetrahedral unit that the grammar describes and then checks to see if the new tetrahedral unit is within the pre-described boundary. If it is within the boundary the tetrahedral unit is permanently added to the space frame network and the computer program moves on to the next unattached triangular face. If the new tetrahedral unit is not within the boundaries it is discarded and the program applies another grammar to that face if another grammar is available. This process continues until no unattached triangular faces can have a grammar fired upon them without adding a tetrahedral face which does not lie within the boundary. Because the process is partially a random process the whole iterative process must be repeated a number of times in order to determine if the space frame can meet the initial conditions. A beam morphology is demostrated in Figure 7 and a planar morphology is demonstrated in Figure 8.

POTENTIAL USES FOR A FORM GENERATOR

The first potential use of a form generator is in the research into structural morphology. This was one of the primary purposes of this research was to provide a tool which could be used to investigate different morphologies, and possibly determine which morphologies are appropriate with space frame structures and which are not. There are many different types of space frame nodal geometries which each would have its own particular morphology, or morphologies which there are particularly inept at achieving. Through a comprehensive study of these systems, using a form generator, on could determine when it is appropriate for one system to be used and when it would be appropriate to use another.

A form generator could be used in practice as a design tool which could help to translate an architectural design into a structural system. Form generation by architects is done by many different methods, some digital and some analogue. Once a form is generated it could be imputed into the grammar based form generator to determine a space frame structural system which would be appropriate for the given boundary conditions. This process could be a best fit process using several different space frame nodal geometries. Once the best geometry is generated it could be given to the engineer for analysis of the structure and the sizing of the members.

Ultimately it is still too early in the research to ascertain whether the grammar based form generator would be beneficial as a research or as a design tool. What is known is that the use of grammars as the basis of a form generator for space frame structures is an appropriate methodology. They have been successfully defined and have been successfully implemented into a computer system. They are able to generate different morphologies based on the inherent nodal geometry of the structural system. Mitchell was correct when he hypothesized that an appropriate determinate of an architectural design is its structure (Mitchell, 1990).

REFERENCES

- Condit, Carl. American Building Art: The Twentieth Century. New York: Oxford University Press, 1961.
- Durand, Jean Nicolas Louis. *Précis de Leçond d'Architecture*. Paris: École Polytechnique, 1802.
- Engel, Heinrich. Tragsysteme: Structure Systems. Stuttgart: Deutsche Verlags - Anstalt GmbH, 1967.

- Gerrits, Joop M. "Morphology of Structural Connections of Space Frames." Application of Structural Morphology in Architecture: Proceedings of the 2nd International Seminar on Structural Morphology, pp. 47-56. International Association for Shell and Spatial Structures Working Group No. 15. Stutgartt: Institute for Lightweight Structures, 1994.
- Mitchell, William. The Logic of Architecture: Design, Computation and Cognition. Cambridge, MA: MIT Press, 1990.
- Rice, Peter. An Engineer Imagines. London: Artemis, 1994.
- Schueller, Wolfgang. *Horizontal-Span Building Structures*. New York: John Wiley and Sons, 1983.
- Stiny, George. "Two Exercises in Formal Composition." Environment and Planning B. 3 (1976), pp. 187-210.
- ______. "Ice-ray: A Note on the Generation of Chinese Lattice Designs." *Environment and Planning B.* 4 (1977): pp. 89-98.

- Wachsmann, Konrad. The Turning Point of Building: Structure and Design. Translated by Thomas E. Burton. New York: Teinhold Publishing, 1961.
- Wilkinson, Chris. Supersheds: The Architecture of Long-Span, Large-Volume Buildings. Oxford: Butterworth Architecture, 1991.
- Wojtowicz, Jerzy and William Fawcett. Architecture: Formal Approach. New York: Academy Edition St. Martin's Press, 1986.